Package ‘MIND’

Type Package

Title Mathematically-based Integration of heterogeneous Data

Version 1.0

Date 2011-03-31

Author Jozsef Bukszar <jbuksz@vcu.edu>

Maintainer Jozsef Bukszar <jbuksz@vcu.edu>

Description MIND is a package that implements a method that integrates multiple heterogeneous data sets into a novel data collection (of genetical data) based on a rigorous mathematical foundation.

License GPL (version 2 or later)

LazyLoad yes

R topics documented:

 MIND-package .. 2
 alkappa_estim .. 5
 clt_dr.calc .. 6
 combing ... 7
 contribution_estimator 7
 contribution_estimators 8
 contribution_estimator_aux 8
 contribution_estimator_binary 9
 contribution_estimator_few 10
 contribution_estimator_fews 10
 cumclt_dr_plot 11
 cumcontribution_calc_noties 12
 cumcontribution_empir_noties 13
 cumcontribution_rough_noties 13
 cumulative_gamma 14
 dvec_creator .. 15
 exameds .. 15
 exameds_noties 16
 gamma_calc ... 16
 informtest .. 17
 informtest_aux 18
Description

The goal is to find genetic units (SNPs, genes, chromosomal segments) related to a disease/disorder in the novel data collection (NDC) by utilizing information already available from 'existing' data sets (EDSs).

For each genetic unit the code `mind` computes the `cltdr`, the posterior probability that it has an effect in the NDC, based on the information in the NDC and the EDSs. The code `mind` also computes the `ltdr`, the posterior probability that a genetic unit has an effect in the NDC based on the information only in the NDC.

The method is generic in the sense that

1. the EDSs can be of any type whose genetic units can be ranked, e.g. gene expression, linkage data, GWAS, literature search etc, candidate genes. Ties are allowed, e.g. an EDS may provide only binary information (i.e., a genetic unit is implicated or not).
2. the novel data collection can be of any type with the mild restriction that a statistic value needs to be assigned to each genetic unit,
3. the NDC and the EDSs may be of different type.

Also the codes `informtest` and `informtest_binary` test EDS if it is informative to the novel data collection.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>MIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2011-03-31</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (version 2 or later)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>
The main code that integrates the data sets (mind)

As the EDSs can be of different type, their genetic units maybe different. For instance, if we have gene expression data, GWAS and linkage data as EDS, their genetic units are gene, SNP, and chromosomal segment, respectively. Therefore, first the EDSs need to be transformed into data sets based on test units, the genetic unit of the NDC. For instance, a gene-based EDS can be transformed into SNP-based EDS by assigning to each SNP the smallest EDS rank (or p-value) of the genes that contain the SNP.

As a next step, prepare the array (vector) stats_nov that has the observed statistic values of the test units in the NDC. The test unit whose NDC statistic value is the i-th component in stats_nov will be referred to as the i-th test unit, for i=1,2,... Prepare the matrix lowbetts, each row of which contains the-lower-the-better-type (e.g. p-values) information for the test units from an existing data set. It is very important that the i-th column in lowbetts has information about the i-th test unit. If there is no information about the i-th test unit in an EDS, then the corresponding entry in lowbetts should be NA. It is also very important that each row of lowbetts has the-lower-the-better-type information of an EDS, that is the lower value a test unit is assigned to, the more likely it is to be related to the disease. Examples of the-lower-the-better-type information are p-values, the negative of the absolute value of test statistics or their ranks, etc. For binary data sets, the corresponding row of lowbetts must contain exactly two different symbols, including NA. If it contains NA, then test units with NA will be considered less preferred based on the EDS. For instance, if the EDS is a list of candidate genes, then the entries in the corresponding row in lowbetts may be 1s for test units ‘covered by’ the candidate genes, and NAs elsewhere, or any number bigger than 1 elsewhere. Also the estimated null and alternative, i.e. non-null, c.d.f and p.d.f in the NDC (cdf1_fun, cdf0_fun, pdf1_fun, pdf0_fun) as well as the estimated number of the alternative, i.e. non-null, test units in the NDC are needed. There are multiple methods published that estimate the aforementioned distributions. Their performance typically depends on the type of the NDC. For GWAS NDC we developed our own method, which is not part of the package.

For each test unit the code mind returns an estimate of the cltdr and the ltdr).

The code cumcltdr_plot

Plots and returns the expected number of test units with effect when cltdr- or ltdr-based selection is used.

The plot can be used to assess the gain of using information from the existing data sets. For further details see code cumcltdr_plot.

Informativeness test (informatest and informatest_binary)

Tests if an ‘existing’ data set is informative to the novel data collection.

Uses the O statistic to test if the input ‘existing’ data set is informative to the novel data collection. In case the input ‘existing’ data set is informative to the novel data collection the boldface black curve lies above the thin colored curves. Note that for some scenarios dots may be plotted instead of curves. The boldface black curve represents the O statistics calculated with the novel data collection and the ‘existing’ data set, whereas each thin colored curve represents the O statistics calculated with the novel data collection and a randomly permuted ‘existing’ data set.

Author(s)

Jozsef Bukszar

Maintainer: Jozsef Bukszar <jbukszar@vcu.edu>

References

Jozsef Bukszar, Amit N. Khachane, Karoling Aberg, Youfang Liu, Joseph L. McClay, Partick F. Sullivan, and Edwin J.C.G. van den Oord, A rigorous method for integrating multiple heterogeneous
Examples

Simulating data

numeds <- 300000 # the number of test units in the EDS (the test units in
the EDS that are not in the NDC are ignored through
the entire analysis)
m1eds <- 5000 # the number of test units that are alternative (non-null)
in the EDS
mlstar <- 3300 # the number of test units in the EDS that are alternative
in the NDC
mlover <- 2500 # the number of test units that are alternative in the EDS
and in the NDC
detnov <- 2.0 # detectability (=effect size * sqrt(sample size)) of the
alternative test units in the NDC
psi <- 1.6 # needed to simulate existing data set ranks
numnov <- 2 * numeds # the number of test units in the NDC
minov <- 2 * mlstar # the number of alternative (non-null) test units in the NDC

stats_ndc <- rnorm(numnov)
stats_ndc[1:mlstar] = stats_ndc[1:mlstar] + detnov
stats_ndc[(numnov-minov+mlstar+1):numnov] =
 stats_ndc[(numnov-minov+mlstar+1):numnov] + detnov

aux <- rnorm(numeds)
aux[(numeds-m1eds+mlover+1):numeds] = aux[(numeds-m1eds+mlover+1):numeds] + psi
WARNING! If you change the parameters,
make sure that numeds < numnov - minov + mlstar + 1
remains valid (important for correctly
simulate the NDC-EDS structure)

bux <- rank(-abs(aux)) # Existing data set prior (the lower the better type of data)

lowbett <- c(bux, rep(NA, numnov-numeds)) # NAs are put for test units about which
we have no EDS information available

dim(lowbett) <- c(1, numnov) # Needed to be set in a matrix form (each row
corresponds to an EDS)

Defining null and alternative, i.e. non-null, c.d.f and p.d.f in the NDC

cdf1_fun <- function(x) {
det <- detnov
absx <- abs(x)
fw1 <- pnorm(absx-det) - pnorm(-absx-det)
return(fval)
}

cdf0_fun <- function(x) {
absx <- abs(x)
fw0 <- pnorm(absx) - pnorm(-absx)
return(fval)
alkappa_estim

pdf1_fun <- function(x) {
 det <- detnov
 absx <- abs(x)
 fval <- dnorm(absx-det) + dnorm(absx+det)
 return(fval)
}

pdf0_fun <- function(x) {
 absx <- abs(x)
 fval <- 2*dnorm(absx)
 return(fval)
}

Data integration (it takes about eight seconds on a 3.33GHz, # 3.25GB RAM dual core proc. computer)
res <- mind(stats_ndc, lowbett, m1nov, cdf1_fun, cdf0_fun, pdf1_fun, pdf0_fun, noties_innonbinary=TRUE)
 # WARNING! noties_innonbinary should be FALSE if # there are ties in any EDS.
cltdr <- res$cltdr
ltdr <- res$ltdr

rez<-cumcltdr_plot(res,NN=10000) # Plotting the cumulative cltdr/ltdr curves

###

alkappa_estim

Alkappa estimator

Description

Estimates alkappa, a technical parameter.

Usage

alkappa_estim(psi_est, cc, mvec, numeds, inp_alkappa_est_index = -1, M1_techn = 100, plottingon = FALSE)

Arguments

- **psi_est**
 psi, a technical parameter
- **cc**
 rough cumulative contribution estimates on mvec
- **mvec**
 grid for the ranks in the existing data set (technical parameter).
- **numeds**
 the number of test units in the existing data set.
- **inp_alkappa_est_index**
 the number of the first elements in mvec and cc that will be taken into account by the estimator (if negative, then all elements will be taken into account).
- **M1_techn**
 technical parameter
- **plottingon**
 logical. Do we need a plot or not?
cltdr_calc

Value

<table>
<thead>
<tr>
<th>alkappa</th>
<th>estimate of alkappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>cumcontribs</td>
<td>smoothed cumulative contribution estimates on the elements of mvec</td>
</tr>
</tbody>
</table>

cltdr_calc \hspace{1em} Computing the compound true discovery rate (cltdr)

Description

Computes the compound true discovery rates, cltdr-s, for test units.

Usage

\[\text{cltdr_calc}(f0, f1, \text{numalt}, \text{contribs}) \]

Arguments

f0	array of the null probability density function values on the novel data collection test statistics.
f1	array of the alternative probability density function values on the novel data collection test statistics.
numalt	the number of alternative test units in the novel data collection.
contribs	if matrix, then each of its row contains the contributions of an existing data set; if vector, then it contains the contributions of an existing data set; if NULL, the code computes the local true discovery rate (ltdr) of test units.

Details

If contribs is NULL, then the code computes the local true discovery rate (ltdr) of test units, which is the posterior probability that a test unit is alternative based on the novel data collection data only.

Value

cltdr	array of the compound true discovery rates (cltdr-s) of test units.
beta	combined prior odds.
adjratio	adjustment ratio needed to attain that cltdr-s sum up to \text{numalt}.
combing

Combining multiple grids for ’existing’ data set ranks

Description

Combes multiple grids for a ranked ’existing’ data set

Usage

```r
combing(mvecom, grids, mvec_finest)
```

Arguments

- `mvecom`: the grid that need to be approximated.
- `grids`: list of multiple grids for a ranked ’existing’ data set
- `mvec_finest`: the finest possible grid for the ranks in the existing data set.

contribution_estimator

Contribution estimator for non-binary ’existing’ data sets

Description

Estimates the test units’ contribution to the novel data collection from a non-binary ’existing’ data set.

Usage

```r
contribution_estimator(stats_ndc, lowbett, dvec, predic, mvec_finest, m1ran, M1_techn = 100, max_iter = 1)
```

Arguments

- `stats_ndc`: observed statistic values of the test units in the novel data collection.
- `lowbett`: array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- `dvec`: grid for distribution of the novel data collection statistics (technical parameter).
- `predic`: F0_fun(dvec) - F1_fun(dvec), where F1_fun and F0_fun is the alternativ and the null c.d.f. in the novel data collection, respectively.
- `mvec_finest`: the finest possible grid for the ranks in the existing data set.
- `m1ran`: technical parameter.
- `M1_techn`: technical parameter.
- `max_iter`: technical parameter: the maximum number of iterations in one of the functions the code calls.

Value

- `contribs`: array of the estimated contributions
contribution_estimators

Contribution estimator

Description

Estimates the test units’ contribution to the novel data collection from a non-binary existing data set that contains no ties.

Usage

```
contribution_estimators(stats_ndc, lowbett, dvec, predic,
                      mvec_finest, m1ran, M1_techn, max_iter)
```

Arguments

- **stats_ndc**: observed statistic values of the test units in the novel data collection.
- **lowbett**: array that contains the-lower-the-better-type (e.g. p-values, t-test stats) information for the test units from an existing data set.
- **dvec**: grid for distribution of the novel data collection statistics (technical parameter).
- **predic**: \(F_0(dvec) - F_1(dvec) \), where \(F_1 \) and \(F_0 \) is the alternative and the null c.d.f. in the novel data collection, respectively.
- **mvec_finest**: the finest possible grid for the ranks in the existing data set.
- **m1ran**: technical parameter.
- **M1_techn**: technical parameter.
- **max_iter**: technical parameter: the maximum number of iterations in one of the functions the code calls.

Value

- **contribs**: array of the estimated contributions

contribution_estimator_aux

Contribution estimator

Description

This is a low level version of the code `contribution_estimators`. Estimates the test units’ contribution to the novel data collection from an existing data set.

Usage

```
contribution_estimator_aux(stats_ndc, lowbett_eds, dvec,
                           predic, mvec_entire, mvecom, cc_grid, dd_grid, ee_grid,
                           grid_mvecbeg, m1ran, M1_techn = 100, max_iter = 1)
```
contribution_estimator_binary

Description

Estimates the test units’ contribution to the novel data collection from a binary existing data set.

Usage

```r
contribution_estimator_binary(stats_ndc, lowbett_eds, 
   dvec, predic, plottingon = FALSE)
```

Arguments

- **stats_ndc**: observed statistic values of the test units in the novel data collection.
- **lowbett_eds**: array that contains the lower-the-better-type (e.g. p-values, test stats) information for the test units from an existing data set.
- **dvec**: grid for distribution of the novel data collection statistics (technical parameter).
- **predic**: \(F_0(dvec) - F_1(dvec) \), where \(F_1 \) and \(F_0 \) is the alternative and the null c.d.f. in the novel data collection, respectively.
- **mvec_entire**: the finest possible grid for the ranks in the existing data set.
- **mveccom**: grid for the ranks in the existing data set (technical parameter).
- **cc_grid**: grid for estimating the technical parameter \(\alpha \).
- **dd_grid**: grid for estimating the technical parameter \(\psi \).
- **ee_grid**: grid for estimating the technical parameter \(M_1 \) (not in use now).
- **grid_mvecbeg**: grid for estimating the technical parameter \(\psi \).
- **mlran**: technical parameter.
- **M1_techn**: technical parameter: the maximum number of iterations in one of the functions the code calls.
- **plottingon**: logical. Do we need a plot or not?

Value

- **contribs**: array of the estimated contributions
contribution_estimator_fews

Contribution estimator for non-binary ‘existing’ data sets with few categories

Description

Estimates the test units’ contribution to the novel data collection from a non-binary ‘existing’ data set with few categories.

Usage

contribution_estimator_few(stats_ndc, lowbett, dvec, predic, mvec_finest, M1_techn = 100)

Arguments

stats_ndc observed statistic values of the test units in the novel data collection.
lowbett array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
dvec grid for distribution of the novel data collection statistics (technical parameter).
predic F0_fun(dvec) - F1_fun(dvec), where F1_fun and F0_fun is the alternativ and the null c.d.f. in the novel data collection, respectively.
mvec_finest the finest possible grid for the ranks in the existing data set.
M1_techn technical parameter.

Value

contribs array of the estimated contributions
cumcltdr_plot

Usage

contribution_estimator_fews(stats_ndc, lowbett, dvec, predic, mvec_finest, mvecom, M1_techn = 100)

Arguments

stats_ndc observed statistic values of the test units in the novel data collection.
lowbett array that contains the-lower-the-better-type (e.g. p-values, t-test stats) information for the test units from an existing data set.
dvec grid for distribution of the novel data collection statistics (technical parameter).
predic F0_fun(dvec) - F1_fun(dvec), where F1_fun and F0_fun is the alternative and the null c.d.f. in the novel data collection, respectively.
mvec_finest grid for the ranks in the existing data set.
mvecom grid for the ranks in the 'existing' data set for the estimator that estimates psi and alkappa simultaneously.
M1_techn technical parameter.

Value

contribs array of the estimated contributions

cumcltdr_plot Cumulative cltdr and ltdr plot

Description

Plots the estimated cumulative cltdr (black curve) and ltdr (red curve), that is the expected number of test units with effect when cltdr- or ltdr-based selection is used.
Also returns the cummulative cltdr-ltdr-s as well as the indices of test units selected by the cltdr- and the ltdr-based method.
Also computes the number of test units that are selected by both the cltdr-based AND the ltdr-based selection, if N/N test units are selected by both methods.

Usage

cumcltdr_plot(res, NN)

Arguments

res output object of the code mind.
NN the number of test units the cumulative cltdr and ltdr will be calculated for.

Details

The cumulative cltdr/ltdr at k is defined as the sum of the largest k cltdr/ltdr-s. It equals the expected value of the number of alternative, i.e. non-null, test units (test units with effect) in the k test units with the largest cltdr/ltdr-s.
Therefore, the plot and the output can be used to assess the gain of using information from the existing data sets.
cumcontribution_calc_noties

Rough cumulative contribution estimator

Description
Calculates the test units’ ‘roughly estimated’ cumulative contributions to the novel data collection from a non-binary ‘existing’ data set.

Usage

cumcontribution_calc_noties(stats_ndc, lowbett_eds, dvec, mvec, F0F1dvec)

Arguments

stats_ndc observed statistic values of the test units in the novel data collection.
lowbett_eds array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
dvec array of cut-offs for the novel data collection statistics.
mvec array of cut-offs for the existing data set ranks.
F0F1dvec \(F_0Fun(dvec) - F_1Fun(dvec) \), where \(F_1Fun \) and \(F_0Fun \) is the alternative and the null c.d.f. in the novel data collection, respectively, and \(dvec \) is defined above.

Details
The k-th cumulative contribution is the sum of the k largest contributions. This function returns the rough estimate, i.e. the non-smoothed estimate, of the k-th cumulative contribution for some values of k. The values of k are determined by array \(mvec \), defined above.

Value

cumcontribs an array of roughly estimated cumulative contributions.
statistics a matrix of the statistics that were used for estimating the rough cumulative contributions.
cumcontribution_empir_noties

Calculating the statistics used for estimating contribution and evaluating existing data sets

Description

Calculates the statistics used for estimating contribution and evaluating existing data sets based. The statistics are calculated for a pair of data sets, the novel data collection and one existing data set, utilizing ultimately only ranked data in both data sets.

Usage

cumcontribution_empir_noties(stats_ndc, lowbett_eds, dvec, mvec)

Arguments

- **stats_ndc**: observed statistic values of the test units in the novel data collection.
- **lowbett_eds**: array that contains the-lower-the-better-type (e.g. p-values, test stats) information for the test units from an existing data set.
- **dvec**: array of cut-offs for the novel data collection statistics.
- **mvec**: array of cut-offs for the existing data set ranks.

Details

The statistics are calculated for multiple cut-offs for the ranks in the existing data set (mvec) and for multiple cut-offs for the test statistics in the novel data collection (dvec).

Value

A matrix of statistic values arranged in such a way that each column corresponds to a cut-off for the novel data collection statistics (dvec) and each row corresponds to a cut-off for the existing data set ranks (mvec).

cumcontribution_rough_noties

Rough cumulative contribution estimator

Description

Calculates the test units’ `roughly estimated` cumulative contributions to the novel data collection from a non-binary `existing` data set.

Usage

cumcontribution_rough_noties(ostat, F0F1dvec)
cumulative_gamma

Arguments

- **osta**: a matrix of statistics used for estimating contribution and evaluating existing data set based, it is the output of function `cumcontribution_empir_noties`.
- **F0F1dvec**: $F_0\text{fun}(dvec) - F_1\text{fun}(dvec)$, where $F_1\text{fun}$ and $F_0\text{fun}$ is the alternative and the null c.d.f. in the novel data collection, respectively, and dvec is array of cut-offs for the novel data collection statistics used to calculate `osta`.

Details

The k-th cumulative contribution is the sum of the k largest contributions. This function returns the rough estimate, i.e. the non-smoothed estimate, of the k-th cumulative contribution for some values of k. The values of k are determined by vector mvec used to calculate the input matrix `osta`.

Value

An array of roughly estimated cumulative contributions.

cumulative_gamma Computing rank probabilities

Description

Calculates very close approximates to Gamma_k for every k in input array `Rvec`.

$\Gamma_k = \sum_{i=1}^{k} \gamma_i$, where γ_i is the probability that a statistic with rank i comes from an alternative distribution given that there are m1 alternative statistics with parameter delta and m0=numark-m1 null statistic.

Usage

`cumulative_gamma(Rvec, del, m1, numark)`

Arguments

- **Rvec**: array of indices. For each index, say k, the sum of probabilities corresponding to ranks smaller than or equal to k will be computed.
- **del**: the detectability in the underlying distribution.
- **m1**: the number of alternative statistics.
- **numark**: the number of statistics.

Value

Array with sums of the probabilities. Each element of the array corresponds to the element of the input array `Rvec` in the same position.
dvec_creator

Grid for novel data collection statistics

Description

Creates a grid for novel data collection statistics.

Usage

```r
dvec_creator(stats_nov, smallrat = 0.0005426192, 
             bigrat = 0.137374, lend = 120)
```

Arguments

- `stats_nov`: observed statistic values of the test units in the novel data collection.
- `smallrat`: technical parameter.
- `bigrat`: technical parameter.
- `lend`: the desired length of `dvec`.

Details

Creates a grid, `dvec`, for novel data collection statistics. For the first element of array `dvec`, `dvec[1]`, we have that the proportion of the elements in `stats_nov` whose absolute value is greater than or equal to `dvec[1]` is `smallrat`, i.e.

\[\text{sum(abs(stats_nov)} \geq dvec[1]) \approx \text{round(smallrat*length(stats_nov))} \]

Similarly, for the last element of array `dvec`, `dvec[lend]`, we have that the proportion of the elements in `stats_nov` whose absolute value is greater than or equal to `dvec[lend]` is `bigrat`, i.e.

\[\text{sum(abs(stats_nov)} \geq dvec[lend]) \approx \text{round(bigrat*length(stats_nov))} \]

The rest of the elements of `dvec` are equidistantly chosen between the first and the last one.

Value

A grid for novel data collection statistics.

exameds
Examining existing data sets

Description

Examines an existing data set.

Usage

```r
exameds(lowbett)
```

Arguments

- `lowbett`: array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
exameds_noties
Examining existing data sets

Description
Examines an existing data set.

Usage
```
exameds_noties(lowbett)
```

Arguments
- `lowbett`: array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.

Note
It differs from the code `exameds` by assuming that no non-binary data set contains any ties.

gamma_calc
Computing rank probabilities

Description
Calculates Gamma_k = \(\sum_{i=1}^{k} \gamma_i \), where \(\gamma_i \) is the probability that a statistic with rank i comes from an alternative distribution given that there are \(m_1 \) alternative statistics with parameter delta and \(m_0 = \text{numark} - m_1 \) null statistic.

Usage
```
gamma_calc(k, delta, m_1, numark, tolerance = 1e-10)
```

Arguments
- `k`: the number of the smallest (best) ranks the sum of whose probabilities will be computed.
- `delta`: the detectability in the underlying distribution.
- `m_1`: the number of alternative statistics.
- `numark`: the number of statistics.
- `tolerance`: the desired accuracy.

Value
The sum of the probabilities.
Informtest

Informativeness test

Description
Tests if an ‘existing’ data set is informative to the novel data collection.

The input arrays `stats_nov` and `lowbett` must be synchronized, i.e. the i-th element of `stats_nov` and the i-th element of `lowbett` must represent the same test unit for every i=1,2,3... Array `lowbett` should contain NA-s for test units the ‘existing’ data set has no information for.

Usage

```r
informtest(stats_nov, lowbett, dpercent = 0.01, 
            Mpercent = 0.1, N = 100, Mlength = 10)
```

Arguments

- **stats_nov**: observed statistic values of the test units in the novel data collection.
- **lowbett**: array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- **dpercent**: the percent of the novel data collection test statistics used for the test.
- **Mpercent**: the maximum percent of the ‘existing’ data set ranks used for the test.
- **N**: the number of permutations used for the test.
- **Mlength**: the number of percents of the ‘existing’ data set ranks used for the test.

Details

Uses the O statistic to test if the input ‘existing’ data set is informative to the novel data collection.

In case the input ‘existing’ data set is informative to the novel data collection the boldface black curve lies above the thin colored curves. Note that for some scenarios dots may be plotted instead of curves. The boldface black curve represents the O statistics calculated with the novel data collection and the ‘existing’ data set, whereas each thin colored curve represents the O statistics calculated with the novel data collection and a randomly permuted ‘existing’ data set.

For the permutation test, the category labels are permuted in the existing data set. The O statistics are calculated with using `dpercent` percent for the novel data collection statistics and the rank cut-offs in array `mvecom` for the ‘existing’ data set ranks. There are `Mlength` rank cut-offs in the ‘unadjusted version’ of array `mvecom` equidistantly chosen in such a way that the maximum element is `Mpercent` times the number of test units in the existing data set. Then `mvecom` is adjusted in such a way that for every rank cut-off in `mvecom` all ranks in a category are either smaller or bigger than the rank cut-off. The code returns an array of p-values of the permutation tests. Each p-value is calculated for an element of `mvecom` and `dpercent`.

Value

- **p_values**: Array of p-values obtained by the permutation tests. Each element corresponds to a percent in `mvecom` (see details above).
informtest_aux Auxiliary function for informativeness test

Description

Auxiliary function for informativeness test *informtest*.

Usage

```
informtest_aux(sta, mvec, dcrit, lenm, recnumeds)
```

Arguments

- **sta**: absolute value of observed statistic values of the test units in the novel data collection.
- **mvec**: array of cut-offs for ranks in the 'existing' data set.
- **dcrit**: critical value for the absolute values of the statistics in the novel data collection.
- **lenm**: technical parameter.
- **recnumeds**: the reciprocal of the number of test units in the 'existing' data set.

informtest_binary Informativeness test for binary 'existing' data sets

Description

Tests if a binary 'existing' data set is informative to the novel data collection.

The input arrays *stats_nov* and *lowbett* must be synchornized, i.e. the i-th element of *stats_nov* and the i-th element of *lowbett* must represent the same test unit for every i=1,2,3... Array *lowbett* may contain NA-s for test units the 'existing' data set has no information for, however, *lowbett* must contain exactly two different simbols (incl. NA).

Usage

```
informtest_binary(stats_nov, lowbett, dpercent = 0.01, N = 100)
```

Arguments

- **stats_nov**: observed statistic values of the test units in the novel data collection.
- **lowbett**: array that contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- **dpercent**: the percent of the novel data collection test statistics used for the test.
- **N**: the number of permutations used for the test.
Details

Uses the O statistic to test if the input binary ‘existing’ data set is informative to the novel data collection. In case the input binary ‘existing’ data set is informative to the novel data collection the big black dot appears above the small colored dots. The big black dot represents the O statistic calculated with the novel data collection and the binary ‘existing’ data set, whereas each small colored dot represents the O statistics calculated with randomly permuted novel data collection and the ‘existing’ data set.

For the permutation test, the novel data collection statistics are permuted. The O statistics are calculated with using *dpercent* percent for the novel data collection statistics and the rank cut-off dictated by the binary ‘existing’ data sets. In particular, the rank cut-off separates the ranks of the two categories in the binary ‘existing’ data set. The code returns the p-values of the permutation tests, that is the proportion of O statistics on the permuted data greater than the O statistic on the original data.

Value

- **p_value** The p-value obtained by the permutation tests.

ml_estim

m1 estimator

Description

Estimates m1, a technical parameter.

Usage

```
ml_estim(numeds, ee, mvi, psi_est, alkappa_est, m1ran)
```

Arguments

- **numeds** the number of test units in the existing data set.
- **ee** rough cumulative contribution estimates on *mvi*.
- **mvi** grid for the ranks in the existing data set.
- **psi_est** psi estimate
- **alkappa_est** alkappa estimate
- **m1ran** the interval the m1 estimate is searched in.

Value

An m1 estimate.
Description

For each test unit (marker) the code returns an estimate of the posterior probability (\(\text{cltdr}\)) that the test unit has an effect in the novel data collection based on the information in the novel data collection and the 'existing' data sets.

The code also returns the posterior probability estimates (\(\text{ltdr}\)) computed without using the 'existing' data sets.

Usage

\[
\text{mind}(\text{stats}_n, \text{lowbetts}, \text{numalt}, \text{cdf1}_\text{fun}, \text{cdf0}_\text{fun}, \\
\text{pdf1}_\text{fun}, \text{pdf0}_\text{fun}, \text{noties}_\text{innonbinary} = \text{FALSE}, \text{cutfew} = 50)
\]

Arguments

- \(\text{stats}_n\): observed statistic values of the test units in the novel data collection.
- \(\text{lowbetts}\): matrix each row of which contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- \(\text{numalt}\): the (estimated) number of test units with effect in the novel data collection.
- \(\text{cdf1}_\text{fun}\): the (estimated) alternative cumulative distribution function in the novel data collection.
- \(\text{cdf0}_\text{fun}\): the (estimated) null cumulative distribution function in the novel data collection.
- \(\text{pdf1}_\text{fun}\): the (estimated) alternative probability density function in the novel data collection.
- \(\text{pdf0}_\text{fun}\): the (estimated) null probability density function in the novel data collection.
- \(\text{noties}_\text{innonbinary}\): logical. Set it \text{TRUE}, if there is no ties in any non-binary existing data sets. Shortens the running-time if it is \text{TRUE}.
- \(\text{cutfew}\): technical parameter. It is the cut-off value for the number of categories in an existing data set. It determines which smoother method should be used to estimate the cumulative contributions.

Details

The vectors \(\text{stats}_n\) and the rows in \(\text{lowbetts}\) must be synchronized, i.e. the \(i\)th element of vector \(\text{stats}_n\) and of each row in \(\text{lowbetts}\) must represent the same test unit.

For test units with no available information in certain 'existing' data sets, NA-s should be put in the corresponding columns and rows of \(\text{lowbetts}\).

Value

- \(\text{cltdr}\): array of the compound local true discovery rate estimates of the test units.
- \(\text{ltdr}\): array of the local true discovery rate estimates of the test units.
Warning

The vectors `stats_nov` and the rows in `lowbetts` must be synchronized, i.e. the `ith` element of vector `stats_nov` and of each row in `lowbetts` must represent the same test unit.

For test units with no available information in certain ’existing’ data sets, NA-s should be put in the corresponding columns and rows of `lowbetts`.

Author(s)

Jozsef Bukszár

References

For further details please visit the web site http://www.people.vcu.edu/~jbukszar/.

Description

This is a low level version of the code `mind`. For each test unit the code returns an estimate of the posterior probability (cldr) that the test unit has an effect in the novel data collection based on the information in the novel data collection and the ’existing’ data sets. The code also returns the posterior probability estimates (ltdr) computed without using the ’existing’ data sets.

Usage

```r
mind_aux(stats_nov, lowbetts, numalt, f0, f1, dvec, predic,
          cutfew = 50, M1_techn_rat = 0.1, max_iter = 1)
```

Arguments

- `stats_nov`: observed statistic values of the test units in the novel data collection.
- `lowbetts`: matrix each row of which contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- `numalt`: the (estimated) number of test units with effect in the novel data collection.
- `f0`: the null pdf values on `stats_nov`, where the null pdf is the null probability distribution function of the statistic in the novel data collection.
- `f1`: the alternative pdf values on `stats_nov`, where the alternative pdf is the alternative (non-null) probability distribution function of the statistic in the novel data collection.
- `dvec`: grid for distribution of the novel data collection statistics (technical parameter).
- `predic`: `F0_fun(dvec) - F1_fun(dvec)`, where `F1_fun` and `F0_fun` is the alternative and the null c.d.f. in the novel data collection, respectively.
- `cutfew`: technical parameter. It is the cut-off value for the number of categories in an existing data set. It determines which smoother method should be used to estimate the cumulative contributions.
- `M1_techn_rat`: technical parameter
- `max_iter`: technical parameter. It is the maximum number of iterations in one of the functions the code calls.
Value

A list with components `cltdr`, which is an array with compound local true discovery rate estimates of the test units, and `ltdr`, which is an array with local true discovery rate estimates of the test units.

Author(s)

Jozsef Bukszár

Description

This is a low level version of the code `mind`. This version assumes that there is no tie in any non-binary 'existing' data set. For each test unit the code returns an estimate of the posterior probability (`cltdr`) that the test unit has an effect in the novel data collection based on the information in the novel data collection and the 'existing' data sets. The code also returns the posterior probability estimates (`ltdr`) computed without using the 'existing' data sets.

Usage

```r
mind_bux(stats_nov, lowbetts, numalt, f0, f1, dvec, predic,
          cutfew = 50, M1_techn_rat = 0.1, max_iter = 1)
```

Arguments

- `stats_nov`: observed statistic values of the test units in the novel data collection.
- `lowbetts`: matrix each row of which contains the-lower-the-better-type (e.g. p-values, -test stats) information for the test units from an existing data set.
- `numalt`: the (estimated) number of test units with effect in the novel data collection.
- `f0`: the null pdf values on `stats_nov`, where the null pdf is the null probability distribution function of the statistic in the novel data collection
- `f1`: the alternative pdf values on `stats_nov`, where the alternative pdf is the alternative (non-null) probability distribution function of the statistic in the novel data collection
- `dvec`: grid for distribution of the novel data collection statistics (technical parameter)
- `predic`: `F0_fun(dvec) - F1_fun(dvec)`, where `F1_fun` and `F0_fun` is the alternative and the null c.d.f. in the novel data collection, respectively.
- `cutfew` : technical parameter.
- `M1_techn_rat` : technical parameter.
- `max_iter` : technical parameter.

Value

A list with components `cltdr`, which is an array with compound local true discovery rate estimates of the test units, and `ltdr`, which is an array with local true discovery rate estimates of the test units.

Author(s)

Jozsef Bukszár
mvec_creator

Grids for 'existing' data set ranks

Description

Creates multiple grids for a ranked 'existing' data set for multiple estimators.

Usage

mvec_creator(numeds, lenmvec = 30, lenmvecbeg = 20)

Arguments

numeds the number of test units in the existing data set.
lenmvec technical parameter.
lenmvecbeg technical parameter.

Value

A list of multiple grids.

param_estim

Psi, alkappa and m1 estimator

Description

Estimates the technical parameters, psi and alkappa. Used for smoothing the rough cumulative contribution estimates.

Usage

param_estim(ee, mvi, dd, mvecbeg, cc, mvec, numeds, grid_mvecbeg, m1ran, m1_start = 100, max_iter = 10, tolprec = 0.2, smootheron = TRUE, plottingon = TRUE)

Arguments

ee rough cumulative contribution estimates on mvi.
mvi grid for the ranks in the existing data set.
dd rough cumulative contribution estimates on mvecbeg.
mvecbeg grid for the ranks in the existing data set for the psi estimator.
cc rough cumulative contribution estimates on mvec.
mvec grid for the ranks in the existing data set for the alkappa estimator.
umeds the number of test units in the existing data set.
grid_mvecbeg grid for mvecbeg used for psi estimate after smoothing dd.
m1ran the interval the m1 estimate is searched in.
param_estim_simult

initial number for the \(m_1 \) estimator.

the maximum number of iteration for the \(m_1 \) estimator.

tolerance for the precision the \(m_1 \) estimator is required to reach expressed in terms of percentage of \(m_1 \).

logical. Should \(dd \) be smoothed for the psi estimator or not?

logical. Do we need a plot or not?

Value

- **psi**: estimate of psi
- **alkappa**: estimate of alkappa
- **m1**: estimate of \(m_1 \)
- **cumcontribs**: smoothed cumulative contribution estimates on the elements of \(mvec \)

Description

Estimates the technical parameters, psi and alkappa, simultaneously. Used for smoothing the rough cumulative contribution estimates.

Usage

```r
param_estim_simult(cc, mvec, numeds, M1_techn = 100, psi_range = c(0.01, 5), PSI_tolerance = 0.01, plottingon = TRUE)
```

Arguments

- **cc**: rough cumulative contribution estimates on \(mvec \).
- **mvec**: grid for the ranks in the existing data set for the estimator that estimates psi and alkappa simultaneously.
- **numeds**: the number of test units in the existing data set.
- **M1_techn**: technical parameter.
- **psi_range**: the interval the psi estimate is searched in.
- **PSI_tolerance**: tolerance for error of the psi estimator.
- **plottingon**: logical. Do we need a plot or not?

Value

- **psi**: estimate of psi
- **alkappa**: estimate of alkappa
- **cumcontribs**: smoothed cumulative contribution estimates on the elements of \(mvec \)
plotter_double
Plotting rough and smoothed cumulative contribution estimates

Description
Plotting rough and smoothed cumulative contribution estimates for two grids of the ranks in the existing data set.

Usage
`plotter_double(dd, mvecbeg, cc, mvec, cum_contribution_est)`

Arguments
- `dd`: rough cumulative contribution estimates on `mvecbeg`.
- `mvecbeg`: one of the grids for the ranks in the existing data set.
- `cc`: rough cumulative contribution estimates on `mvec`.
- `mvec`: the second grid for the ranks in the existing data set.
- `cum_contribution_est`: smoothed cumulative contribution estimates

Details
Creates two plots, each corresponds to one of the grids for the ranks in the existing data set.

Warning
Input array `cum_contribution_est` must contain the smoothed cumulative contribution estimates for both grid.

priorprob_calc
Computing prior probabilities

Description
Computes prior probabilities of test units for an existing data set.

Usage
`priorprob_calc(contribs, m1perm)`

Arguments
- `contribs`: array of contribution estimates of an existing data set.
- `m1perm`: the number of alternative test units divided by the the number of test units in the novel data collection.

Value
Array of prior probabilities of test units for an existing data set.
psifind_withratiomatrix

Psi estimator

Description

Estimates psi, a technical parameter.

Usage

```r
psifind_withratiomatrix(yvec, xvec, numeds, M1_techn = 100,
psi_range = c(0.01, 5), PSI_tolerance = 0.01)
```

Arguments

- `yvec`: cumulative contribution estimates on `xvec`
- `xvec`: grid for the ranks in the existing data set.
- `numeds`: the number of test units in the existing data set.
- `M1_techn`: technical parameter.
- `psi_range`: the interval the psi estimate is searched in.
- `PSI_tolerance`: tolerance for error of the psi estimator.

Value

An estimate of psi.

psi_alkappa_estim

Psi and alkappa estimator

Description

Estimates psi and alkappa (technical parameters). It is a wrapper function for `psi_estim` and `alkappa_estim`.

Usage

```r
psi_alkappa_estim(dd, mvecbeg, cc, mvec, numeds, grid_mvecbeg,
M1_techn = 100, smootheron = TRUE, plottingon = TRUE)
```
psi_estim

Arguments

- **dd**: rough cumulative contribution estimates on `mvecbeg`.
- **mvecbeg**: grid for the ranks in the existing data set for the psi estimator.
- **cc**: rough cumulative contribution estimates on `mvec`.
- **mvec**: grid for the ranks in the existing data set for the alkappa estimator.
- **numeds**: the number of test units in the existing data set.
- **grid_mvecbeg**: grid for `mvecbeg` used for psi estimate after smoothing `dd`.
- **M1_techn**: technical parameter.
- **smootheron**: logical. Should `dd` be smoothed for the psi estimator or not?
- **plottingon**: logical. Do we need a plot or not?

Value

- **psi**: estimate of psi
- **alkappa**: estimate of alkappa
- **cumcontribs**: smoothed cumulative contribution estimates on the elements of `mvec`

psi_estim

Psi estimator

Description

Estimates psi, a technical parameter.

Usage

```r
psi_estim(cc, mvecbeg, numeds, mgrid, M1_techn = 100, plottingon = FALSE, smootheron = TRUE, smoother.method = "spline")
```

Arguments

- **cc**: rough cumulative contribution estimates on `mvecbeg`.
- **mvecbeg**: grid for the ranks in the existing data set.
- **numeds**: the number of test units in the existing data set.
- **mgrid**: grid for `mvecbeg` used for psi estimate after smoothing `cc`.
- **M1_techn**: technical parameter.
- **plottingon**: logical. Do we need a plot or not?
- **smootheron**: logical. Should `cc` be smoothed for the psi estimator or not?
- **smoother.method**: the name of the method used for smoothing `cc`. It can be either "spline" or "quadratic".

Value

An estimate of psi.
Description

Calculates quadratic approximation for the response y and predictor x by least square method.

Usage

```r
quadratic_approx(x, y)
```

Arguments

- `x` : array of predictors
- `y` : array of responses

Details

Uses the model $y = a \cdot x^2 + b \cdot x + c + \text{eps}$, where eps is a normally distributed random variable with 0 expected value.

Value

- `y` : array of response without noise
- `comp2` : array of coefficients, a, b and c

Author(s)

Jozsef Bukszar
Index

*Topic htest
alkappa_estim, 4
cldrd_calc, 5
combing, 6
contribution_estimator, 6
cntribution_estimator_aux, 7
cntribution_estimator_binary, 8
cntribution_estimator_few, 9
cntribution_estimator_fews, 9
cntribution_estimators, 7
cumcldrd_plot, 10
cumcontribution_calc_noties, 11
cumcontribution_empir_noties, 11
cumcontribution_rough_noties, 12
cumulative_gamma, 13
dvec_creator, 14
exameds, 14
exameds_noties, 15
gamma_calc, 15
informtest, 16
informtest_aux, 17
informtest_binary, 17
ml_estim, 18
mind, 19
mind_aux, 20
mind_bux, 21
mvec_creator, 22
param_estim, 22
param_estim_simult, 23
plotter_double, 24
priorprob_calc, 24
psi_alkappa_estim, 25
psi_estim, 26
psifind_withratiomatrix, 25
quadratic_approx, 27

*Topic package
MIND-package, 1

alkappa_estim, 4, 25
cldrd_calc, 5
combing, 6
contribution_estimator, 6, 7
contribution_estimator_aux, 7
contribution_estimator_binary, 8
contribution_estimator_few, 9
contribution_estimator_fews, 9
contribution_estimators, 7
cumcltdr_plot, 2, 10
cumcontribution_calc_noties, 11
cumcontribution_empir_noties, 12, 13
cumcontribution_rough_noties, 12
cumulative_gamma, 13
dvec_creator, 14
exameds, 14, 15
exameds_noties, 15
gamma_calc, 15
informtest, 2, 16, 17
informtest_aux, 17
informtest_binary, 2, 17
ml_estim, 18
MIND (MIND-package), 1
mind, 1, 2, 10, 11, 19, 20, 21
MIND-package, 1
mind_aux, 20
mind_bux, 21
mvec_creator, 22
param_estim, 22
param_estim_simult, 23
plotter_double, 24
priorprob_calc, 24
psi_alkappa_estim, 25
psi_estim, 25, 26
psifind_withratiomatrix, 25
quadratic_approx, 27